

INCOLOY® alloy DS (W. Nr. 1.4862), first developed for woven wire furnace conveyor belts, is now widely used for a range of heat-treatment applications where its strength and corrosion resistance at high temperatures enable its use in light section.

Alloys for use in high-temperature processes must be able to withstand exposure to hot combustion gases and operating atmospheres for a considerable period of time without the loss of effective section that can be caused by corrosion.

INCOLOY alloy DS, in common with other Special Metals Corporation heat-resisting alloys, develops a tightly adherent oxide film that protects its surface against corrosion processes. It is also resistant to 'green rot' which can occur in nickel-chromium alloys when atmospheres vary between reducing and oxidizing, and in some cases where the reducing atmosphere is of a carburizing nature. In these conditions chromium carbide can form along the grain boundaries and preferential oxidation of the depleted chromium matrix follows, a form distinct from ordinary oxidation which produces a passive oxide film.

INCOLOY alloy DS is also resistant to 'sigma' phase, a hard, brittle, complex intermetallic compound, basically iron-chromium, which precipitates in the 600-900°C range from structures that are either ferritic, mixed ferrite and austenite, or marginally austenitic. Nickel, an austenite former, suppresses the tendency to 'sigma' phase formation and INCOLOY alloy DS, with a nominal 37% nickel content, may be heated indefinitely within the 600-900°C range without fear of 'sigma' phase embrittlement.

Thus, the corrosion resistance and strength of INCOLOY alloy DS account for its use in a wide variety of high temperature process equipment ranging from furnace retorts and heat treatment jigs to components used in domestic appliances.

 Table 1 - Composition, % (max. unless stated)

Ni + Co	° C ° °	Mn	Fe	Si	Cr	Cu	Ti	S
34.5-41.0	0.10	0.8-1.5	Balance*	1.9-2.6	17.0-19.0	0.50	0.20	0.03

To B.S. 3073 : NA17

*Reference to the 'balance' of an alloy's composition does not guarantee this is exclusively of the element mentioned, but that it predominates and others are present only in minimal quantities.

Table 2 - Density

									4	Stell		ST	-Steel.	Stal
See.	Steelinge	Sterne		g/cm	3 Starter	Stefas	Sterrer	and the second	- Sel	are staff	7.	86	Straffing	A CONTRACT
, end	-steelese	of collection	at states	lb/in	3 Julio	and a testing	C. Martin	of a feature		a for a sector	0.2	84	and the first	
Ì	1	d a	n a	A	è.	ê s			8	1	0			

The data contained in this publication is for informational purposes only and may be revised at any time without prior notice. The data is believed to be accurate and reliable, but Special Metals makes no representation or warranty of any kind (express or implied) and assumes no liability with respect to the accuracy or completeness of the information contained herein. Although the data is believed to be representative of the product, the actual characteristics or performance of the product may vary from what is shown in this publication. Nothing contained in this publication should be construed as guaranteeing the product for a particular use or application. Table 3 - Melting Range

3	3	- S	- S ^r	- S ^V	3	S	- S	S	- S	3 ^v	- 3
	See Instant	°C	tellar	tertion		testing	and a section	13	30-1	400	1
2.9	2.9	2.9	100	201	104	100	2.9	2.9	2.2		

Publication Number SMC-097 Copyright © Special Metals Corporation, 2004 (Sept 04)

INCOLOY, INCONEL and INCO-WELD are trademarks of the Special Metals Corporation group of companies.

GOLOV® AILOV DS

and the section of th	°C	after after and	and suffering suffering suffering	10 ⁻⁶ /°C	ALANTA
and and and a	20-100	and a second and a second and a second	and the second second	15.0	and the second
	20-200	ren oren oren		15.5	
	20-300	teaters aternet ater		15.9	
	20-400	testing and a testing and a test		16.2	
	20-500	and and a		16.5	
	20-600	ten sten sten		17.0	
	20-700	here's cherry cher		17.5	
	20-800	information stationers start		17.8	
	20-900	Treasured Treasured D		18.2	
	20-1000	feet offeet offeet		18.7	

Table 4 - Mean Coefficient of Linear Thermal Expansion

Average of 5 casts. Hot-rolled plate 11 mm thick. Heat treated 11 min/1020°C/AC

	AT STATE STATE STATE	Star and		
and advantage advantage	°C		J/kg °C	and the set
and and and	20	and and and	452	
	100	Steel Steel Steel	473	
	200	State State State .	502	
	300		528	
and the second	400		557	
	500		582	
	600	Sector Sector Sector :	611	
	700	Automa Automa Automa	636	
	800	the second second	662	
5 5	900	Star Star Star (691	

716

Table 5 - Specific Heat

res!

Table 6 - Electrical Resistivity

°C	Relative Resistance
20	1.000
ో ో 100 ో	1.029
200	1.061
300	1.094
400	1.123
<u>ن 500 کې کې او کې </u>	1.141
600	1.160
700	1.176
800	1.191
900	1.206
1000	1.220

Table 7 - Magnetic Properties

Field str	ength (H	H,oers	ted)	P ermeability (μ)						
	200	and the second	and the second	C. A.	and the second	and the	1.038	, °,	el and		
	300				Stra c		້ 1.031				
are atom of	500				Stefast 2		1.024				
And Andrew	1000				Telligent		1.017				
traffic traffic	1500				Traffer C		1.014				
	2000				Star o		1.014				
	3000				Sterno 2		1.013				

Mass susceptibility at 1000 oersted = $1.72 \times 10^{-4} \text{ cm}^3\text{/g}$. Volume susceptibility at 1000 oersted = 1.36×10^{-3} Hot-rolled plate. Heat treated 10 min/1020°C/AC

1000

Electrical resistivity at 20°C = 108 microhm cm. Average of 5 casts. Hot-rolled plate 11 mm thick. Heat treated 11 min/1020°C/AC

INCOLOY® alloy DS

	°C	Hot rolled plate	Sheet
	Stat Sat	(GPa)	් (GPa) ් ්
Stated Stated Stated	20	194	/ / / / 197
	100	191	193
	200	184	188
	300	178	i81 کې کې
	400	171 5	174
	500	164	168
	600	157	159
	700	149	151
	800	142	144
	900	132	134
	1000	118	119

Table 8 - Dynamic Young's Modulus

Average of 5 casts. Hot-rolled plate, 11 mm thick. Heat treated 11 min/1020°C/AC Average of 4 casts. Sheet 0.7-2.0 mm thick. Heat treated 6 min/1020°C/AC

Table 9 - Dynamic Torsional Modulus

						-	1	1 St 1 St 1 St		1. St. 1. St. 1.
Steel Steel Str	°C	Ster	Ster	Ster	Street	4	Star .	frei Steit	Star S	G Pa
Station Station Str	20	Station	Station	N.C.	Staffer	3 Fred		Station Station	Stallar .	51.7
	100			t al mars						51.7
	200				14. Juni					49.6
	300		ST.	3th	Ste	Street .				47.6
	400		Steffer		Steelins		Station		Stell 3	45.5
and a starting of the starting of the start	500								A COMPANY	43.4
	600			r ^o las	100 - 100 -					40.7
Star Star	700	St.	Stel		Steel		, 6	Jean Star		37.9
Store V	800	St. Car		States	States.	34	States 2			35.9
A state of the state	900	Testinger				a	And and a			33.8
	1000					e di	n and a second	a Go	A CART	29.6

Average of 4 casts. Sheet 0.7-2.0 mm thick. Heat treated 6 min/1020°C/AC

States	°C	0.1% proof stress (MPa)	0.2% proof stress (MPa)	Tensile strength (MPa)	Elongation on 50 mm %
	20	327	363	687	37.1
Stell	100	310	329	629	36.3
Testing	200	284	303	616	32.7
	300	292	304	607	36.7
	400	286	297	602	35.2
	500	269	283	578	35.4
	600	239	253	482	40.1
	700	195	208	335	48.8
	800	107	116	181	75.7
	900	63	66	i 105 i i	79.9
	1000	31	36	65	74.6

Table 10 - Tensile Properties (sheet, cold-rolled, heat treated)

Average of 5 casts. Cold-rolled sheet 0.7-2.0 mm thick. Heat treated 6 min/1020°C/AC

Internet Statement St	°C	0.1% proof stress (MPa)	0.2% proof stress (MPa)	Tensile strength (MPa)	Elongation on 5.65 √ So	Reduction of area
	Start Start Start Start	a strand strand strand strand	Strater States Strates States	Start Start Start Start Start	%	%
	-196	473	485	914	54.5	68.1
	20	298	301	670	47.6	71.5
	100	263	269	618	44.1	69.0
	200	242	247	581	41.1	64.0
	300	219	222	593	41.5	62.1
	400	213	a 219 a a	593	46.7	60.8
	500	196	202	568	43.6	57.3
	600	196	201	490	45.3	45.0
	700	179	185	351	56.7	44.9
	800	136	142	208	74.0	60.7
	900	63	71 /	119	90.9	75.1
	1000	37	42	73	111.3	82.2

 Table 11 - Tensile Properties (plate, hot-rolled, heat treated 10 min/1020°C/AC)

Average of 5 casts. Hot-rolled plate 11 mm thick.

	8 a - 6	ಷ್ಟೆ ನಿ.		e	. 3		100	S 5	. 3	1 di 🔹 .		1	
Table	12 -	lensi	le Pi	opert	les	(plat	te,	hot-rolled	d,	heat treated	1h/1	150°	C/AC)
				110 1		100							11 ¹⁰ 11

and Statement Statement Statement Statement St	°C	0.1% proof stress (MPa)	0.2% proof stress (MPa)	Tensile strength (MPa)	Elongation on 5.65 √ So	Reduction of a rea
	et steel	Start Start Start Start	and an are and a	and the construction of the	ర్ రో% రో రో రి	<u>ర్ ర్</u> యోజు
and States States States States	196	391	406	798	61.1	75.5
	20	210	219	602	61.1	77.0
	100	188	196	551	55.0	70.9
State State State State St	200	164	168	528 🗸 🗸	of the second	71.4
Station Station Station Station Station	300	133	136	505	55.6	68.0
and satisfies allowed allowed allowed a	400	133	136	511	62.2	64.3
	500	119	124	493	64.4	67.8
and and and and a	600	113	116	440	55.5	44.6
or states states states states st	700	117	124	334	31.1	37.3
and a station of the station of the station of the	800	137	145	232	35.6	32.0
en and an and a constant and the	900	66	74	122	86.7	61.9
of of 1	000	37	42	73	97.8	66.3

Data from one cast. Hot-rolled plate 11 mm thick.

india <mark>Stationa</mark> Stati		0 .1% proof s tress (MPa)	0.2% proof stress (MPa)	Tensile s trength (MPa)	Elongation on 5.65 √ So	Reduction of a rea
	water shaftaan shaftaan shaftaan sh	Train Shelfman Shelfman Shelfman Shelfman Shelfman	and alternated alternated alternated alternated alternated	a shelford shelford shelford shelford shelford she	%	%
trainer trainer to	-196	558	579	951	31.1	41.6
	20	360	380	672	38.9	71.1
	100	290	314 5	468 5	13.3	22.3
	200	303	317	595	33.3	66.7
	300	300	306	588	38.9	58.6
	400	280	297	582	37.8	63.9
	500	276	300	562	36.7	48.0
	600	252	266	513	36.7	56.5
	700	221	233	408	32.2	47.8
	800	159	171	235	35.6	65.9
	900	82	88	124	52.2	81.2
	1000	46	48	76	42.2	88.7

 Table 13 - Tensile Properties (plate, hot-rolled, heat treated and welded)

Data from one cast. Hot-rolled plate 11 mm thick. Heat treated 10 min/1020°C /AC prior to welding. Metal arc welded in 4 runs using INCO-WELD® 'A' elec- trode.

Table 14 - Charpy Impact Properties (plate, hot-rolled	I, heat treated
10 min/1020°C/AC)	

N N N		N IN IN IN IN	
	°C		J
Ster Ster Ster	-196 ් ් ්	J J J 1	41
	-100, 500, 500, 500, 500, 500, 500, 500,	ar out of the second by	56
	20	and start strand in 1	80
	100		99
	200	1	97
	300	2	201
	400	and when a when a start 1	78
	500	1	71
	600	1	74
	700	and and set 1	56 🖉 🧹 🏑
	800	1 - 5 - 5 - 5 - 1	48
	900	/ / / / / / 1	56
Ster Ster Ster	1000	2	203
Star Star Star	Se se se se	Star Star Star	The the the the

 Table 15 - Charpy Impact Properties (plate, hot-rolled, heat treated 1h/1150°C/AC)

	t af af a		S.C.
0°		/	à
and a set and and a	-196	217	
and and and and and and	-100	247	
20	estimate estimate estimates	270	
	100	288	
	200	285	
	300	290	
	400	260	
	500	266	
	600	260 0 0	
	700 🧹 💡	236	
	800	157	
	900	184	
an an an an an an an	1000	184	È.

Average of 5 casts. Hot-rolled plate 11 mm thick. Charpy test specimen has square cross section 10 mm, test area 80 mm², V-notch 45° included angle.

Data from one cast. Hot-rolled plate 11 mm thick. Charpy test specimen has square cross section 10 mm, test area 80 mm², V-notch 45° included angle.

INCOLOY® alloy DS

Table 16 - Charpy Impact Properties, J, at Room Temperature

Table 17 - Charpy Impact Properties, J, at High Temperatures

Soaking time, h	Soaking	Soaking temperature, °C						
	800	8 50	900	9 50	1000			
30	137	153	142	171	216			
100	142	136	156	151	134			
300	136	136	156	170	298			
1000	163	142	176	155	292			
3000	140	151	176	279	266			
10 000	123	174	199	243	89			

Data from one cast. Hot-rolled plate 11 mm thick. Heat treated 10

min/1020°C/AC

Charpy test specimen has square cross section 10 mm, test area 80 mm², V-notch 45° included angle.

Soaking time, h	Soaking and test temperature, °C						
	800	8 50	900	9 50	1000		
30	190	176	180	209	216		
100	152	189	231	170	201		
300	203	136	155	178	202		
1000	/ 144	Just - Just	168	168	208		
3000	160	155	161	194	208		
10 000	153	186	161	217	71		

Data from one cast. Hot-rolled plate 11 mm thick. Heat treated 10 min/1020°C/AC

Charpy test specimen has square cross section 10 mm, test area 80 mm², V-notch 45° included angle.

State State State State State	Heat treated 15 min/1020°C/AC			Heat treated 1 h/1150°C/AC		
°C - of the other of the other	100 h	1 000 h	10 000 h	100 h	1 000 h	1 0 000 h
750	67.3	44.5	29.5	72.3	48.8	32.9
850	34.9	20.4	11.9	45.6	26.3	15.2
950	18.1	9.4	4.9	29.2	15.4	8.1
1050	States States States States	State State State State	and a star and	11.4	6.7	3.9

Table 18 - Creep Rupture Properties, MPa, (plate, hot-rolled)

Data from one cast. Hot-rolled plate 3.2 mm thick.

Table 19 - Cyclic Oxidation Resistance

°C	Time to break- away (h)	Rate of spalling (mg/cm²/h)	Weight change in 1000 h (mg/cm²)
890	>1000	Stafford Stafford Stafford Stafford	2.08
910	>1000	all and a street and a street	3.19
990	400	0.112	-50.4
1010	375	0.174	-87.8
1090	50	0.5	-541
1110	50	0.5	-487

INCOLOY® alloy DS

Working instructions

INCOLOY alloy DS is readily fabricated hot and cold and can be joined by standard welding processes.

Hot and cold working

The usual hot working range is 900-1200°C with heavy working being carried out between 1000 and 1200°C. Normal forging operations are usually started from 1200°C and light forging is possible down to 900°C.

The rate of cooling does not affect the alloy's hardness and air cooling or quenching are satisfactory. Quenching forgings should be avoided where the variation in the cross-sectional area of the forging is high.

Cold working procedures are similar to those for carbon and stainless steels. The alloy's rate of work hardening is greater than that of low carbon steel but less than that of 18/8 stainless steel.

Machining

INCOLOY alloy DS is best machined in the annealed condition, with hot-rolled, as-rolled and hot-forged material showing the next best results.

It is best machined on heavy duty equipment using tools large and heavy enough to withstand the loads and dissipate heat quickly.

Annealing

The alloy should be annealed within the range 1000-1150°C, the temperature and holding time depending on the thickness of the material and the proposed application. Cooling rate does not affect hardness.

Furnace fuel should preferable be sulfur-free. Town's gas, natural gas, distillate fuel oils and electricity are suitable. For most heat treatments and heating processes, atmosphere should be adjusted to maintain slight oxidizing conditions.

Bright annealing can be carried out in dry hydrogen or cracked ammonia.

Available Products and Specifications

INCOLOY alloy DS is available in pipe, tube, sheet, strip, plate, round bar, forging stock, hexagon and wire. The alloy is designated Werkstoff Number 1,4862.

Sheet and plate:	BS 3072
Strip:	BS 3073
Seamless tube:	BS 3074
Wire:	BS 3075
Bar:	BS 3076

Pickling

A fused caustic soda mixture is a suitable pre-treatment to be followed by a cold water rinse before acid pickling (HNO₃/FeCl₃) at 65°C for 5-20 minutes, and a final rinse in cold water.

Joining

INCOLOY alloy DS is readily joined to itself or to other metals by standard processes. It is important that material to be welded is in the annealed condition. Removal of welding slag residue is essential to avoid subsequent corrosion in service.

Welding materials to be used are:

For shielded metal arc

INCO-WELD® 'A' electrode

For inert-gas shielded arc

NC 80/20 filler metal